警示二十 有关“遗传物质的发现实验”
失分要记
(1)肺炎双球菌转化的实质和影响因素
①在加热杀死的S型细菌中,其蛋白质变性失活,但不要认为DNA也变性失活,DNA在加热过程中,双螺旋解开,氢键被打开,但缓慢冷却时,其结构可恢复。
②转化的实质并不是基因发生突变,而是S型细菌的DNA片段整合到了R型细菌的DNA中,即实现了基因重组。
③在转化过程中并不是所有的R型细菌均转化成S型细菌,而是只有少部分R型细菌转化为S型细菌。原因是转化受DNA的纯度、两种细菌的亲缘关系、受体菌的状态等因素影响。
(2)噬菌体侵染细菌实验中的标记误区
35S(标记蛋白质)和32P(标记DNA)不能同时标记在同一噬菌体上,因为放射性检测时只能检测到存在部位,不能确定是何种元素的放射性。
(3)噬菌体侵染细菌实验与艾弗里的肺炎双球菌转化实验的方法不同
①前者采用放射性同位素标记法,即分别标记DNA和蛋白质的特征元素(32P和35S);
②后者则采用直接分离法,即分离S型细菌的DNA、多糖、蛋白质等,分别与R型细菌混合培养
警示二十一 有关“DNA结构及复制的计算”
失分要记
(1)碱基计算
①不同生物的DNA分子中互补配对的碱基之和的比值不同,即(A+T)/(C+G)的值不同。该比值体现了不同生物DNA分子的特异性。
②若已知A占双链的比例=c%,则A1/单链的比例无法确定,但最大值可求出为2c%,最小值为0。
(2)水解产物及氢键数目计算
①DNA水解产物:初步水解产物是脱氧核苷酸,彻底水解产物是磷酸、脱氧核糖和含氮碱基。
②氢键数目计算:若碱基对为n,则氢键数为2n~3n;若已知A有m个,则氢键数为3n-m。
(3)DNA复制计算
在做DNA分子复制的计算题时,应看准是“含”还是“只含”,是“DNA分子数”还是“链数”
警示二十二 有关“基因的转录、翻译”
失分要记
(1)转录的产物有三种RNA,但只有mRNA携带遗传信息,并且三种RNA都参与翻译过程,只是分工不同。
(2)密码子的专一性和简并性保证翻译的准确性和蛋白质结构及遗传性状的稳定性。
(3)翻译进程中核糖体沿着mRNA移动,读取下一个密码子,但mRNA不移动。
(4)DNA上遗传信息、密码子、反密码子的对应关系如下图所示:
(5)解答蛋白质合成的相关计算时,应看清是DNA上(或基因中)的碱基对数还是个数;是mRNA上密码子的个数还是碱基的个数;是合成蛋白质中氨基酸的个数还是种类。
警示二十三 有关“中心法则五大过程”
失分要记
(1)需要解旋的过程及相关酶:DNA复制(两条链都作为模板),需解旋酶解旋;转录(DNA的一条链作为模板),需RNA聚合酶解旋。
(2)高等动植物只有DNA复制、转录、翻译三条途径,但具体到不同细胞情况不尽相同,如根尖分生区细胞等分裂旺盛的组织细胞中三条途径都有;但叶肉细胞等高度分化的细胞无DNA复制途径,只有转录和翻译两条途径;哺乳动物成熟的红细胞无信息传递。
(3)RNA复制和逆转录只发生在RNA病毒中,是后来发现的,是对中心法则的补充和完善。
(4)进行碱基互补配对的过程——上述五个过程都有;进行碱基互补配对的场所有四个,即细胞核、叶绿体、线粒体、核糖体。
警示二十四 有关“基因分离定律原理”
失分要记
(1)杂合子(Aa)产生雌雄配子数量不相等
基因型为Aa的杂合子产生雌配子有两种A∶a=1∶1或产生雄配子有两种A∶a=1∶1,但雌雄配子的数量不相等,一般来说,生物产生的雄配子数远远多于雌配子数。
(2)符合基因分离定律并不一定就会出现特定性状分离比
①F2中3∶1的结果必须在统计大量子代后才能得到;子代数目较少,不一定符合预期的分离比;
②某些致死基因可能导致遗传分离比变化,如隐性致死、纯合致死、显性致死等。
(3)自交≠自由交配
①自交强调的是相同基因型个体的交配,如基因型为AA、Aa群体中自交是指:AA×AA、Aa×Aa;
②自由交配强调的是群体中所有个体进行随机交配,如基因型为AA、Aa群体中自由交配是指:AA×AA、Aa×Aa、AA♀×Aa♂、Aa♀×AA♂。
(4)鉴定纯合子、杂合子不一定都选测交法:
警示二十五 有关“两大遗传定律实验方法”
失分要记
(1)看清是探究性实验还是验证性实验,验证性实验不需要分情况讨论直接写结果或结论,探究性实验则需要分情况讨论。
(2)看清题目中给定的亲本情况,确定用自交还是测交。自交只需要一个亲本即可,而测交则需要两个亲本。
(3)不能用分离定律的结果证明基因是否符合自由组合定律。因为两对等位基因不管是分别位于两对同源染色体上,还是位于一对同源染色体上,在单独研究时都符合分离定律,都会出现3∶1或1∶1这些比例,无法确定基因的位置,也就无法证明是否符合自由组合定律。
警示二十六 有关“伴性遗传的发现及遗传特点”
失分要记
(1)萨顿假说运用了类比推理法;摩尔根的科学发现运用了假说—演绎法;摩尔根的发现又为萨顿的假说提供了科学证据。
(2)伴性遗传有其特殊性
①雌雄个体的性染色体组成不同,有同型和异型两种。
②有些基因只存在于X或Z染色体上,Y或W染色体上无相应的等位基因,从而像XbY或ZbW的单个隐性基因控制的性状也能表现。
③Y或W染色体非同源区段上携带的基因,在X或Z染色体上无相应的等位基因,只限于在相应性别的个体之间传递。
④性状的遗传与性别相联系。在写表现型和统计后代比例时,一定要与性别相联系。
(3)X、Y染色体的来源及传递规律
①X1Y中X1只能由父亲传给女儿,Y则由父亲传给儿子;
②X2X3中X2、X3任何一条都可来自母亲,也可来自父亲,向下一代传递时,任何一条既可传给女儿,又可传给儿子;
③一对夫妇(X1Y×X2X3)生两个女儿,则女儿中来自父亲的都为X1,应是相同的,但来自母亲的既可能为X2,也可能为X3,不一定相同。
鉴定某生物个体是纯合子还是杂合子,当被测个体是动物时,常采用测交法;当被测个体是植物时,测交法、自交法均可以,但自交法较简单。
警示二十七 有关“人类遗传病、家族病、先天性疾病”
失分要记
(1)家族性疾病不一定是遗传病,如传染病。
(2)大多数遗传病是先天性疾病,但有些遗传病可在个体生长发育到一定年龄才表现出来,所以,后天性疾病也可能是遗传病。
(3)携带遗传病基因的个体不一定会患遗传病,如白化病基因携带者;不携带遗传病基因的个体也可能患遗传病,如染色体异常遗传病。
(4)用集合的方式表示遗传病与两类疾病的关系如下:
警示二十八 有关“基因突变、基因重组”
失分要记
(1)基因突变发生的时期
①无丝分裂、原核生物的二分裂及病毒DNA复制时均可发生基因突变。
②基因突变不只发生在分裂间期,而是在各个时期都有。
(2)基因突变本质分析
①基因突变是DNA分子水平上基因内部碱基对种类和数目的改变,基因的数目和位置并未改变。
②基因突变≠DNA中碱基对的增添、缺失、替换
a.基因是有遗传效应的DNA片段,不具有遗传效应的DNA片段也可发生碱基对的改变。
b.有些病毒(如SARS病毒)的遗传物质是RNA,RNA中碱基的增添、缺失、替换引起病毒性状变异,广义上也称基因突变。
③生殖细胞的突变率一般比体细胞的突变率高,这是因为生殖细胞在减数分裂时对外界环境变化更加敏感。
④基因突变一定会导致基因结构的改变,但却不一定引起生物性状的改变。
(3)基因突变、基因重组的判别
①如果是有丝分裂过程中姐妹染色单体上基因不同,则为基因突变的结果。
②如果是减数分裂过程中姐妹染色单体上基因不同,可能是基因突变或交叉互换导致的。
警示二十九 有关“染色体变异及育种过程”
失分要记
(1)染色体变异中的可育、不可育与可遗传界定
①单倍体并非都不育。二倍体的配子发育成的单倍体,表现为高度不育;多倍体的配子如含有偶数个染色体组,则发育成的单倍体含有同源染色体及等位基因,可育并能产生后代。
②“可遗传”≠可育。三倍体无子西瓜、骡子、二倍体的单倍体等均表现“不育”,但它们均属于可遗传变异。
(2)单倍体育种与多倍体育种分析
①单倍体育种包括花药离体培养和秋水仙素处理等过程,花药离体培养只是单倍体育种的一个操作步骤。
②两种育种方式都出现了染色体加倍情况:单倍体育种操作对象是单倍体幼苗,通过植物组织培养,得到的植株是纯合子;多倍体育种的操作对象是正常萌发的种子或幼苗。
警示三十 有关“育种方式”
失分要记
(1)杂交育种是最简捷的方法,而单倍体育种是最快获得纯合子的方法,可显著缩短育种年限。
(2)让染色体加倍可以用秋水仙素等进行处理,也可采用细胞融合的方法,且此方法能在两个不同物种之间进行。
(3)原核生物不能进行减数分裂,所以不能运用杂交的方法进行育种,一般采用的方法是诱变育种。
(4)若要培育隐性性状个体,则可用自交或杂交的方法,只要出现该性状即可稳定遗传。
(5)有些植物如小麦、水稻等,杂交实验较难操作,则最简便的方法是自交。
(6)若实验植物为营养繁殖类如马铃薯等,则只要出现所需性状即可,不需要培育出纯种。
警示三十一 有关“生物进化概念及过程”
失分要记
(1)生物进化概念分析
①物种与种群:一个物种可以形成多个种群,一个种群必须是同一物种。同一物种的多个种群间存在地理隔离。
②突变与基因突变:“突变”不是基因突变的简称,而是包括“基因突变”和“染色体变异”。
③抗药个体不是农药诱导产生的:在喷施农药之前,害虫中就存在抗农药的突变个体,喷施农药仅杀灭不抗药的个体,抗药的个体存活下来,农药不能使害虫产生抗药性变异,只是将抗药性个体选择出来。
(2)物种形成与生物进化分析
①物种的形成不一定都需要经过地理隔离,如多倍体的产生。
②生物进化不一定导致物种的形成:
a.生物进化的实质是种群基因频率的改变,这种变化可大可小,不一定会突破物种的界限,引发生殖隔离,即生物进化不一定导致新物种的形成。
b.新物种一旦形成,则说明生物肯定进化了。